Physical and functional connection between auxilin and dynamin during endocytosis.
نویسندگان
چکیده
During clathrin-mediated endocytosis, the GTPase dynamin promotes formation of clathrin-coated vesicles, but its mode of action is unresolved. We provide evidence that a switch in three functional states of dynamin (dimers, tetramers, rings/spirals) coordinates its GTPase cycle. Dimers exhibit negative cooperativity whereas tetramers exhibit positive cooperativity with respect to GTP. Our study identifies tetramers as the kinetically most stable GTP-bound conformation of dynamin, which is required to promote further assembly into higher order structures such as rings or spirals. In addition, using fluorescence lifetime imaging microscopy, we show that interactions between dynamin and auxilin in cells are GTP-, endocytosis- and tetramer-dependent. Furthermore, we show that the cochaperone activity of auxilin is required for constriction of clathrin-coated pits, the same early step in endocytosis known to be regulated by the lifetime of dynamin:GTP. Together, our findings support the model that the GTP-bound conformation of dynamin tetramers stimulates formation of constricted coated pits at the plasma membrane by regulating the chaperone activity of hsc70/auxilin.
منابع مشابه
Recruitment dynamics of GAK and auxilin to clathrin-coated pits during endocytosis.
Cyclin G-associated kinase (GAK), the ubiquitous form of the neuronal-specific protein auxilin 1, is an essential cofactor for Hsc70-dependent uncoating of clathrin-coated vesicles. Total internal reflectance microscopy was used to determine the timing of GAK binding relative to dynamin and clathrin binding during invagination of clathrin-coated pits. Following transient recruitment of dynamin ...
متن کاملA burst of auxilin recruitment determines the onset of clathrin-coated vesicle uncoating.
Clathrin-coated pits assemble on a membrane and pinch off as coated vesicles. The released vesicles then rapidly lose their clathrin coats in a process mediated by the ATPase Hsc70, recruited by auxilin, a J-domain-containing cofactor. How is the uncoating process regulated? We find that during coat assembly small and variable amounts of auxilin are recruited transiently but that a much larger ...
متن کاملThe J-domain protein Rme-8 interacts with Hsc70 to control clathrin-dependent endocytosis in Drosophila
By screening for mutants exhibiting interactions with a dominant-negative dynamin, we have identified the Drosophila homologue of receptor-mediated endocytosis (Rme) 8, a J-domain-containing protein previously shown to be required for endocytosis in Caenorhabditis elegans. Analysis of Drosophila Rme-8 mutants showed that internalization of Bride of sevenless and the uptake of tracers were block...
متن کاملThe major yolk protein of sea urchins is endocytosed by a dynamin-dependent mechanism.
Sea urchin oocytes grow to 10 times their original size during oogenesis by both synthesizing and importing a specific repertoire of proteins to drive fertilization and early embryogenesis. During the vitellogenic growth period, the major yolk protein (MYP), a transferrin-like protein, is synthesized in the gut, transported into the ovary, and actively endocytosed by the oocytes. Here, we begin...
متن کاملRegulating dynamin dynamics during endocytosis
Dynamin is a large GTPase that mediates plasma membrane fission during clathrin-mediated endocytosis. Dynamin assembles into polymers on the necks of budding membranes in cells and has been shown to undergo GTP-dependent conformational changes that lead to membrane fission in vitro. Recent efforts have shed new light on the mechanisms of dynamin-mediated fission, yet exactly how dynamin perform...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 25 18 شماره
صفحات -
تاریخ انتشار 2006